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Algorithm for Linear Programming1

by
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Abstract

In this note we propose a polynomial-time algorithm for linear programming. This algorithm

augments the objective by a logarithmic penalty function and then solves a sequence of quadratic

approximations of this program. This algorithm has a complexity of O(mtl2-L) iterations and

O(m 3.5.L) arithmetic operations, where m is the number of variables and L is the size of the problem

encoding in binary. This algorithm does not require knowledge of the optimal value and generates a

sequence of primal (dual) feasible solutions that converges to an optimal primal (dual) solution (the
latter property provides a particularly simple stopping criterion). Moreover, this algorithm is simple

and intuitive, both in the description and in the analysis - in contrast to existing polynomial-time

algorithms. It works exclusively in the original space.
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1. Introductio1

Consider linear programming problems of the form

Minimize (c,x) (P)

subject to Ax=b, x_>0,

where c is an m-vector, A is an nxm matrix, b is an n-vector, and (,.) denotes the usual Euclidean

inner product. In our notation, all vectors are column vectors and superscript T denotes the

transpose. We will denote by %m (9 n) the m-dimensional (n-dimensional) Euclidean space.

For any vector x in 911 , we will denote by xj the jth component of x. For any positive vector x

in %m we will denote by Dx the mxm positive diagonal matrix whose jth diagonal entry is the jth

component of x. Let X denote the relative interior of the feasible set for (P), i.e.

X= { xe9tmAx=b, x>O).

We will also denote by e the vector in 9Sm all of whose components are 's. "Log" will denote the

natural log and Ii. I1 , I1 112 will denote, respectively the Ll-norm and the L2 -norm. We make the

following standing assumption about (P):

Assumption A:

(a) Both X and ( ur 9 n I ATu < c ) are nonempty.

(b) A has full row rank.

Assumption A (b) is made only to simplify the analysis and can be removed without affecting either

the algorithm or the convergence results. Note that Assumption A (a) implies (cf. [3], Corollary

29.1.5) that the set of optimal solutions for (P) is nonempty and bounded. For any e > 0, consider

the following approximation of (P):

Minimize f,(x) (PC)

subject to Ax = b,
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where we define fr:(0,*o)m--*1X to be the penalized function:

f'(x) = (c,x) - eX log(xj). (1.1)

Note that

Vf (x) = c- • , V2f,(x) =E (1.2)

L1/Xm 0 .. 1/(Xm)2-

The literature on Karmarkar's algorithm [1] is too vast to survey and we will not do so here. Our
approach to solving (P), which is similar to that taken in [5]-[6], [111, is to solve, approximately, a

sequence of problems { (Per)}, where {er) is a sequence of geometrically decreasing scalars. The

approximate solution of (Per), denoted by xr, is obtained by solving the quadratic approximation of

(Per) around xrl. The novel feature of our algorithm is its simplicity, both in the description and in

the analysis. And yet it has an excellent complexity. Also, our algorithm is unusual in that it is a
primal affine-scaling algorithm that generates feasible primal and dual solutions.

This note proceeds as follows: in §2 we show that, given an approximately-optimal primal dual

pair of (P.), an approximately-optimal primal dual pair of (P.), for some aE (0,1), can be obtained

by solving a quadratic approximation of (Ps). In §3 and §4 we present our algorithm and analyze its

convergence. In §5 we discuss the initialization of our algorithm. Finally, in §6 we give our

conclusion and discuss extensions.
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Fix any e > 0 and consider the problem (P.) D1 3. ribution/
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Minimize (c,x) - cX log(xj) st Seia

subject to Ax = b,



and let"R be any element of X and letu be any element of %n'. We replace the objective function by

its quadratic approximation around x = x. This gives (cf. (1.2))

Minimize (c--E(-D)-e,z) + ez(D-z/

subject to Az = 0,

where we denoteb = Drx. The Karush-Kuhn-Tucker point for this problem, say (z,u), satisfies

c - e(DY-e + C(DY 2 z - ATU = 0, (2.l1a)

Az = 0. (2. 1b)

Let d = (DYz. Solving ford gives

pd = [I-(AD)T(AD 2 AT)-lADjr, (2.2)

where we denote

r = -:5c + e+(AD)T-u.

Note that, since the orthogonal projection is a nonexpansive mapping (with respect to the L2-norm),

we have from (2.2)

11dI12  5 IrII2iE. (2.3)

Let

x = x +z, (2.4)

D DX, and A = Dd. ThenD D +AT) and hence

-Dc + ce + (AD)Tu- [-:5c + ce + (A7D)TuI + A[-Zc + (A7DhTu]

=Ed + A[-D5c + (A7D)TU]

=Afee -'5c +(A'5)TuI
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=EAd,

where the second and the fourth equality follow from (2.1a). This implies that (with dj denoting the

jth component of d)

Il-Dc + cc + (AD)TU1l 2 = r-lIAdtl 2

!5 eIIAdlI1

= Eli (dj)2

= e(Ildll2 )2

Or I~l 2 )2/e, (2.5)

where the first inequality follows from properties of the L1-normn and the L2-normn and the second

inequality follows from (2.3).

Consider any P3e (0,1) and any scalar (x satisfying

(I32+M1I2)/(3-+m 1/2) 5 (X < 1. (2.6)

Let F-' = cze and r' = -Dc + E'e + (AD)Tu. Then

llr'1l 2/F,' = Il-Dc + ccee + (AD)TUII 2/(aC)

5 Il-Dc + ce + (AD)TUII 2/(ae) + (1--a).ml/2/c

5 (lfrIl2/e)2/a+±(lfa-).ml1P,

where the first inequality follows from the triangle inequality and the second inequality follows from

(2.5). Hence, by (2.6), if IFrII2/E! 0, then lIr'l12/c': P J. Furthermore, by (2.3), we have that idII2 <

< 1. Hence e+d > 0 and (cf. (2.4)) x > 0. Also, by (2. 1 b) and (2.4), Ax =A(ixz) =b.

For any F, > 0, let p,:(0,oc)mx9In-+[0,') denote the function
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pe(y,p) = II-Dyc + ee + (ADY)TPl"2/e. (2.7)

We have then just proved the following important lemma:

Lemma 1 For any E > 0, any Pe (0,1) and any (-Xu)e Xx9, n such that p,(x-) _ 13, we have

(X,u)EX>g n,  P.,(x,u) < ,

where cc = (I32+mI/2)/(P+m1/2) and (x,u) is defined as in (2.1a), (2.1b), (2.4).

3. The Homotopy Algorithm

Choose a = (1/4+mI/ 2)/(l/2+mlf2). Lemma 1 and (2.1a)-(2.1b), (2.4) motivate the following

variant of Karmarkar's algorithm, parameterized by two positive scalars y < C:

Homotopy Algorithm

Step 0: Choose any (x1,u1)e XX91n such that p,(xl,ul) < 1/2. Let e = e.

Step r: Compute (zr+l,ur+l) to be a solution of

[Er(DXr)-2 -..AT ] z] = Er(Dr)-le..c ]
A 0 0

Set xr+l = xr+ zr+I, ercl=ctr.

If e <_ y, terminate.

[Note: For simplicity we have fixed 3 = 1/2.] We gave the above algorithm the name "homotopy"

because it solves (approximately) a sequence of problems {(Pr)) that approaches (P) (see [21).
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4. Convergence Analysis

By Lemma 1, the homotopy algorithm generates, in at most (log(y)-log(e-))flog(a) steps, an

(X,u)e Xx9tn satisfying

II-Dxc + It + (ADO)TU1l 2 !5 Y/2, (4.1)

Ax = b.

Since y > 0, (4. 1) implies that

0o D~c - (ADx)TU !5 (3y/2)*e.

Since DX is a positive diagonal matrix, multiplying both sides by (Dx)-I gives

o < c - ATu <5 (3y/2)*(D,)-Ie.

This in turn implies that, for each jE(1.

o < c - (Aj~u) 5 3y'/ 2/2 if xj ylyt2,

o < cj - (Aj,u) otherwise,

where cjdenotes the jth component of c and Aj denotes the jth column of A (note that an analogous

argument shows that ur is dual feasible for all r). Also, since

log(1-8) -8 -2/ 3/3-.4/4

-8~~(1 +(82) + (&2)2 +(8/2)3 +.)

for any Be (0, 1), we have that

log(ac) = log(l-(2+4ml/)-I)
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:5-I/(2+4m f-I/2).

Hence we have just proved following:

Lemma 2 For any positive scalars y < e, the homotopy algorithm generates, in at most

(3/2+4m1 2)-(log(e)-log(y)) steps, a pair of optimal primal and dual solutions to a perturbed

problem of (P), where the costs are perturbed by at most 3y't2 2 and the lower bounds are perturbed

by at most yl1/.

Thus if we choose e = 29L) and y = 2-O(L), where L denotes the size of the problem encoding in

binary (defined as in [1]), the homotopy algorithm would terminate in O(ml/'.L) steps with an
optimal primal dual solution pair to a perturbed problem of (P) and the size of the perturbation is
2-(L). An optimal primal dual solution pair to (P) can then be recovered by using, say, the
techniques described in [7] (also see [1]). Since the amount of computation per step is at most
O(m3) arithmetic operations (not counting Step 0), the homotopy algorithm has a complexity of

O(m 3 ..L) arithmetic operations. [We assume for the moment that Step 0 can be done very "fast".

See §5 for justification.] This complexity can be reduced to O(m 3 .31L) by using Strassen's
(impractical) matrix inversion method [101. It may be possible to reduce the complexity to O(m 3L)
by using the rank-oie npdatc technique described in [11, [ 111.

5. Algorithm Initialization

In this section we show that, for e sufficiently large, Step 0 of the nomotopy algorithm (i.e. to

generate a primal dual pair (x,u)E XX91n satisfying p,(x,u) 5 1/2) can be done very "fast".

Suppose that (P) is in the canonical form considered by Karmarkar (see §5 of [1] for details on

how to transform general linear programs into this canonical form). We claim that, for e = 211c112, a

point (x,u)= XX9 n satisfying p,(x,u) 5 1/2 can be found immediately. To see this, note that in

Karmarkar's canonical form, A and b have the form
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AA b- ,
eT m

where A' is some (n-1)xm matrix, and the point e is assumed to satisfy Ae = b. Let x = e and p

(0.. - T. Then

e+ (ADx)Tp = e + ATp

- e-e = 0. (5.1)

Hence, by (2.7), x = e, and the triangle inequality,

p,(x,Ep) = Ul-Dxc + ee + c(ADx)TplI 2/e

5 11c112/E + lie + (ADx)Tpll 2

=1/2.

Alternatively, we can solve the following probem

Maximize ,' log(xY) (5.2)

subject to Ax = b,

whose Karush-Kuhn-Tucker point (x,p) can be seen to satisfy (5.1) (such a point exists if the

feasible set for (P) is bounded). Then, for e = 2IIDxcHl2 , we also have p,(x,e-p) _ 1/2. The (unique)

primal solution of (5.2) is sometimes called the analytic center [8] of the convex polyhedron ( x I Ax

= b, x 0 ). Polynomial-time algorithms for solving (5.2) are described in [81 and [91 (note that

(5.2) does not have to be solved exactly).

6. Conclusion and Extensions

In this note we have proposed a very simple polynomial-time algorithm for linear programming.

This algorithm solves a sequence of approximations to the original problem, each augmented by a
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logarithmic penalty function, and, unlike many other Karmarkar-type algorithms, uses no space

transformation of any "nd. This algorithm uses a number of steps (namely O(ml/2L)) that is the

lowest amongst interior point methods for linear programming. Because the primal and dual

solutions obtained at each step are respectively primal and dual feasible, determining termination is

particularly simple: terminate if the difference in their costs is below a prespecified tolerance.

There are many directions in which our result can be extended. Can the complexity be decreased

further? Can our algorithm extend to quadratic programming or to problems with upper bound on

the variables? Does there exist a general class of convex functions h,:X-4X, where X is a convex

set in 91m, such that h,(x) -4 h0(x) pointwise as e 1I, 0 and, given an approximate minimum of h., an

approximate minimum of h., (a is a sufficiently small scalar in (0,1)) car. be obtained very

"quickly"?
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